Final Report: EnerTree

Team 3

Vamsi Choday Shirali Desai Teagan Groh Mary Mulcahy Grace Oberst

December 10th, 2019

Trees perform photosynthesis everyday - some through their leaves and others, such as the palo verde tree, through their bark. Just as a tree carries out generating energy, our team wanted to replicate that behavior into creating a solar panel. Furthermore, we wanted the solar panel to be able to withstand harsh weather environments, like pine needles do, and we wanted it to be portable. We designed the dowels of the solar panel to be presented in a Fibonacci spiral to help embrace how these spirals are so evident in nature. We also made the dowels have the ability to raise up and down together to promote portability. The final design has 1 center piece of pine wood, 5 retractable dowels, 1 string intertwined between all the dowels to assist in raising up and down, and the ability to produce only 7% fewer kiloWatt hours on a clear, sunny day than a flat solar panel with the same surface area.

To begin the design process, our team started with a collection of 25 unique organisms that were chosen based on our respective interests. To narrow down our organisms, we looked for similar behaviors or processes between each of them using a Functional Matrix, where we researched unique adaptations of each organism and potential applications (see Figure 1).

	Shiral Desai					Teogae Groh					Varnsi Choday					Grace Oberst					Nary Mulcahy				
Species	Rying Squimel	Suger Glider	Plying Seaks	Tree Squirrel	Ing	Venus Fly Trap	Piso Cores Needles	Palo Vorde Tree	Seguere Cectus	Beech Leaves	PufferFish	Porcupine Fish	Cane Toad	Putt Adder	Greyhound	Desert Ants	Monarch Butterfly	Data	Gung Sector	Fidder Croks	Dog	Deinonychus	White pelican	Squid	Polychaela worms
Movement	Gidng-novement	Gidng movement	Giding movement	Swifty dinbing bees	Stock absorber ligte movemented	very quick convex to concave leaf shape change				ordened folding and unfolding via Muza Ori origami pattern	Awkwant/site swimming & body inflation	Aukustálsov svimmig & body nfaton		Catepilar-like locanicion & body inflation	Fast locarriton especially around corners	Perform "learning dances" to orient themselves to stay on track as they newlighte			Roll their balls of durg in a straight line and circumvent obstacles	Have one claw significantly bigger than the other to score away attackers/stract mate using waving		Leaping, tight groping with claws, flying behavior	Flying and diving into water to hunt		Tentacle used for feeding and picking up exogenous materials to attach to tube
Research focus	Flying squime's are able to use their body to glide	Flying squimtis are able to use their body to glide	Figing stakes are able to use aerodynamics to glide	Clinting ability	Sticity tongue and adhesive saliva	rapid shape change to catch bugs but still photosynthesize	pine needle shape efficiency	photosynthetic bark (and neodie heaves wooce) - besically an inverted tree	spinalmeedie shape efficiency	ordened failing of leaves	Skin expandsligets thinner but retains structural rigidity	Spines lay flat to conserve hydrodynamics, become orect when animal is puffed up	Females inflate bodies to fiend off predation and social select mates.	Entire body inflatos to intervidute predators and make it more difficult for them to seallow pull adders	Greyhounds are able to run very quokily around comers	Navigation through desert using the position of the sur & geomagnetic field of the earth	circadian deck located inside the anternae combined wisurts position in the sky aids butterfly migration	internal magnetic compass set by the polarized refluction of the sun - migration across the occan	Perform a dance on top of their ball to record mertal picture of position of the Sun, Moon, stars and can see polenced light - navigation through	Have polarization contrast against the nutflat which can be minimized to avoid confrontation with other crabs or be enhanced to send signals	Canines have a very storng and sensitive sense of smell	Deirorychus engaged in pack hurting behavier	Pelicars have a pouch like beak to scoop up fish	Cephiapods have vory developed camefiauge mechanism	Produce strong protective tabe around their body
Adhesion	Uses paws to latch onto trees	Uses paws to latch onto trees	Snakes will dangle on branch in J shape before gliding	Soft pads undernsahl paws assist in climbing	Tangue allows hog to capture insect, and then the solivo keeps the insect in contact with longue	stays closed based on hair and deformation sensors in leaf							Pulled-up stomach decreases the ability for males to attach/adhere to the females.		Lower center of gravity = better around traction comens										"Giue" on tube made of phosphale, Ca. & Mg nich proteins
Structural Composition	Sam between hind log and front log, fat ball helps balance. Patagian jama da sa saint salen helps sa saint sher away han predators	Fold of skin formanists to their sides helps with gliding	Tubular shape of body helps generate a force of lift. When smaller ampli- added boost of lift. The snakes body has obsular cross sections but go into a fac profile	Hind legs are longer than fare listes, ankies rotate 180 degrees, causing hind legs to point backward and gro-tree	Vaccelastic tongue and con-Newtonan salue, tongue acts like a shock adeother, salva spread aloves for atachmentises lowaton	Europated calls in the losses dehydrate, changing the shape from conceve, and the momentum of the shape change brings the losves all the losves all	Cylindrical needles can photosynthesias at any angle, arranged in a way that promotes show and water to rail off the laxees to prevent weighing down, also spaced out so stong winds don't knock	Instead of photosynthetic leaves, the two has photosynthetic bark to minimize water loss	Contain water in their centers and the stem/bodies are photosysthetic while spines series as protection and photosysthesis wate (water, CG2) emitters; can graw lety bandreds of	Leaves can fold up into very space-effectant shapes and expand to several immes ther width due to linearly mpeaked Muse-On folds in the leaves	Unidentionally oriented collagen Tetres in version layer. Orthogonally oriented collagen them in dorsai layer bach with verying young's modulus to allow for rigitity and expansion	Unidentianally uniential caligner fibers in ventral layer for hyporally central collager fibers in drosa layer. Each with varying young's modulus to alleve the ngdity and expansion. Spines attached to model layer, and become erect when mediaal layer is under tansion during materio.	Rapidy inhale air into buccel ravity and expand the cavity.	During exhabition phose of making the hosting sound, pressure buildup in the mouth pushes on a diaphrain that makes the buily infisited pull-up	Fereintos dominated try bore, tendora, and high pernote muscles which at os a passive soring. Hips dominated by meatels, and person toon-wight bearing power output	Covered in tray transplar hairs free bolitate regulation of body temperature - keep body significantly cooler by reflecting withis light and parting sid of excess heat through black body radiation	Wings composed of this layers of chick formale bodies lighted in proportion to wing slice that makes - mare selectant to team - more successful during migration	Fiexble wing structure smaller to a human am those wing an a small date the heips the date that heips the date date, great manouverability for duing throug the air	Spurs on back used to help roll the balls of durg, storeg frout legist for digging, long flight wings to astern traveling for assered milliss to lock for dung	Moles have one class much larger han the other, purple, blue, or gray categoor	300 million offschry recepton, dvided nasel coshy, secondary selactry system with vymeronasel organ	Unusually large second claw with very sharp takings, organized flying between organizens, commission with noises and chemical signals	Expandable gular risk non mandble part of besk that is usually folded up but can expand to hold 3 galarons when hunting to scoop up fish and water	incphere cells in skin with diff indexet reflect paravet light. Different colored chornetapore cells change size to change skin color	Tube mode of free timeads of orbits, polysecchatdes , & orbits rantomate & covered in ecovered in ecovered is materials
Signaling/Coloration		Scent gland on male's head is used to mark territory	120000			Haits have a mechanical distutance threshhold that when reached triggers the shape change; further similar signaling determines if the leaves slay shut or not		chicrophyl makes the whole the grown		changes in weather bases of should valid pressure, which signals leaf shape changes	When pulled up it is a signal to other putter tak of potential danger	When puffed up it is a signal to other portupine fait of potential durger	When female care toods are pulled-up and there is still a male attached, other males see this as a signal that the female does not want to male with the attached tood and will try to usurp.	Emit a very loud and high pluhed sound to intimidate predators and warn other put denger. Use tongue to attract aniphibian prey			Communicate availability of food through interactions ants that find food enter and leave the mest quickly, and their high speeds through over to other ants who are now more likely to leave the next to get food	Release chemicals from scent glands on wings to attract temates for mating	Communicate through high pliched scheps and screeches, different sounds for mating, marking tentory, alerting banger, etc	cuticle of the crab changes colonpatient to signal to other crabs about mating status tenso diet toor eas to ground water	Voneonesal organ has sensory neurons to detect pheramones frum other canites	Groups of dehonychus grouped up its attack a much dangerous, much læger predator, Jamp on predator, pin it down with ournulafve weight, and hold it down with sharp cipus	Continued pack hunting through squeeks and chemical spinis to other pericans	Belactive relector of polarized light allows them to communicate with one another to coordinate defansive behaviors	
KOANS	Vectanics gliding switty	Mechanics: gliding sality	Vechanics piding stealthy efficient	Mechanics steality and efficient	Materials: lightweight and strong	Nechanics moving without muscles	small needles but good at photosynthesia: ng (small but efficient?)	readmissed potosynthesis but minimal water loss	photosynthesis with minimal water loss	compact, but large surface area	Bad swimmer but can escape faster predetors	Bad swimmer but can escape faster precisions	Wesker than males but can remove them from ampleaus	Sizw moving but featest striking snake	Faster around corners than in a straight line	Physiology - temperature cooling	Physiology - Internal oncadien-clock	Physiology	Physiology	Sensing - communication through polarization	Compact but complex	Aggressive and dangerous but erganized and cooperative huming	Large and spacious but compact. Big beak but doesn't impede fight.	Colorful but hard to see	Tough and Booble
Similar to Other Organisms	Pying snakes, sugar gidens	Pying squittels. Tying stakes	Plying squittels, sugar picters	Origmunks, Fying squimels, other squimels	Lizerd, toed	beech tree leaver, plant tendnis	most evergreen bres	succulents and card	succulerts, other cacil, palo verde tree	mimosa plant	Parcupine feh. Ballaon feh. & Globe feh	Puter fat, Balcon fish, & Gobe fat	Toads, Frags, & Licents	Vipers & Legiess Licentis	Saluki & Algan Hounds	Al navige	te using light from the	un or geomagnetic fiel	d of the Earth	Similar to sould which also uses polarization for communication	Cats, beans, mongcose	Kamodo dragon, crocodile, velocitaptor, Human and wolf (pack hunting)	Comprant, srcw goose, wood stork	Otameleon, octopus, cuttlefet; mants strimp	Armadilo, turtie,molusk
Protective Devices	Big eyes allow for vision at night to evade predators	Big rayes allow for vision at night to exade predistors	Fargs	Large Incisors for graviting: large eyes to see from these; can descend head find down a thes to evade preciators	Flogs can capture insect in less than 1.7 seconds and camp 1.4 times its weight	can digest insects without a stamach	needles are coarse and waavy (not very bedy) and seeds are protected in pre-cones until they are ready for release	instead of leaves, it has spines (He a cactua) that have very small storwar, it is also woody, not waxy	It has spinos indead of leaves and a work outer layer that isn't large	dimate sensors protect leaves from spening in hopportune conditions	Toxic poleon & puffed up body	Tosic polson, puffed up body, & out-ward techning spines	Puffed-up body & toxins in parotoid gands	High pitch sound and puffed up body			Takic to birds and other produces, orange coloration warms such predations not to east them	Safety in numbers, great ability to detect potential enemies and avoid them	Homike structure on bead used for fighting other arts: strong trurt legs also help defense	Wave their big claw to appear strong to other crubus, can reduce brightness of appearance to blend in befor and avoid confloritation	Good sense of smell allows tho detect and avoid predistors better	Sharp stews, saw like jow, fyng Coordination of those between ammits could be used for protection against profestion via attacks		Concealed communication blan cephilipods for group defensive behavior to non-cephilipods can't see the polarized light they use to communicate with eachother	Tube prefects from prediators and hands enveromental conditions
Potential Applications	Parachure like skipet that needs to globe down to Each	Parachute like object that reeds to glide down to Earth	Fieldle that can use it and to com weight to tomsport things at different invels.	An attaching object that can scale a tree up and down in order to obtain information about the bree	A sticky subtance that can dean windows: a product that has newsoble adhessives that stick at a high speed	hydraulic powered muscles/shape change and sensors	cylinchrcal solar panels arranged for high-alltude optimization, or arraes with hansh weather	creating materials that are solar-charged without exploitly solar panels panel efficiency; using solar panels for the bodies of shuctures instead of just panels/cottops	use spines in water collection practices: sal gandis gandis	Mizz-On can be used in solar panels that thange shape though the day, packaging that is robust but space efficient, homedy almost anything that can benefit from conditional changes in shape and dimension	inprove cardiac sim deployment using putterting putterting inspired ballons	Flood control sheet with spines flaps that can be "activates/halosof" using an accutation system to redirect water	Beter desinged airbag fat can be reused after deployment	Drain stake to clear cloguisters a balcon at the end is inflated to SI in the space of the drain obstructions. Hesing sounds/ubrations used to break up obstructions.	CarDune Buggy supportion that befor manages weight detabution around comes to minimale energy loss	Desert robot ravigates without GPS using light sensing materials that are cooling/heat-rosot arit using desing o desert ant hairs	Antihoture where the amount of lighthest cosing intrough windows is controlled, windows to certain colors of light; powerful color cells based on the builterfly wing	bio-repired chares, diverses cars, associate devices for the bind	night vision of dung bedies inspired high-quality uceo shooting in builight situations	introvations with polarization vision	Antificial deg nase to shiff out and miners, canoes, doesses	Deter communication and coordination methods botween humans where engaging in group behaviors or hunting	New stretchy, sching meteral	Deter canchage for solders	New biomimetic materials (new context, sader-borne adhesius, bore glue)

Figure 1. Our team's functional matrix.

Through this method, we narrowed down to the palo verde trees, pine cones/needles, pufferfish, and the white pelican. The palo verde trees and pine cones/needles both produce energy whereas the pufferfish and white pelican both maintain flexibility while having a structured shape. These findings inspired us to look into producing an EnerTree solar panel, an origami tent solar panel, or a kelp inspired solar panel. After prototyping these three devices, we evaluated them in a Pugh Matrix (see Figure 2), and the EnerTree was selected as the design our team wanted to move forward with.

Criteria	Baseline=On house solar panel	Origami Tent	EnerTree	Kelp solar panels
Weight	2-4 lb/sq ft	-1	<mark>-1</mark>	1
Price	\$250	-1	<mark>1</mark>	1
Energy Capacity	6 kW	0	<mark>2</mark>	0
Power rating	320 watts	1	<mark>-1</mark>	-1
Weather resistance	Withstand 1 inch hail falling at 50 mph, winds up to 140 mph	1	<mark>2</mark>	1
Size	65" x 39"	0	<mark>1</mark>	-1
Total:		0	<mark>4</mark>	1

Figure 2. Pugh matrix for our device

Through this thorough design process, each member of our team was able to gain insights about the unique biological gifts of more than twenty-five organisms, as well as insights about how to conduct comprehensive analysis techniques, such as the Pugh Matrix and four box method, to determine the best design concept. Finally, our team was able to gain valuable insight on the proper way to amalgamate the unique design perspectives of several different people into one all-inclusive final design.

The EnerTree design can replicate the way the palo verde tree generates solar energy through its bark, how the pine needles can efficiently produce energy by facing many different directions at once and withstand harsh weather, and how the pufferfish and white pelican promote flexibility and strength. The key linchpin of the design is producing energy, and if the solar panel cannot produce the energy like the trees and needles, then our device would not qualify as a bio inspired design. Our prototype has dowels that replicate the behavior of the pine needles since they are able to move up and down. While our design is not actually able to produce energy as it is merely a prototype, we do think it is an efficient way to improve solar panels - especially after executing copious calculations - so we do think it would be neat to show in a gallery.

Our final prototype is inspired primarily by the pine tree, since we found that specifically for our solar panel design, it was more effective to hone in on a specific concept of an organism. However, some aspects of our design are more broadly inspired, such as arranging the branches as a Fibonacci spiral, which is a common design found in many trees and other plants to maximize area for photosynthesis. A particularly important aspect we wanted to replicate from the pine tree, though, was its unique adaptations to living in environments with more extreme weather patterns.

The pine tree is easily able to survive in places with heavy snowfall because of the shape of the pine needles, which allows precipitation to roll off, and the clusters of needles (Figure 3) which shed snow instead of breaking under the weight of snow build-up. Furthermore, while strong winds are able to travel more easily around the needles rather than flat leaves, preventing the tree from being knocked over. Even though individual

Figure 3. Pine needle clusters

needles have a small surface area, the bundles of needles maximize sunlight capture and are particularly efficient at high altitudes where there is a lot of reflected light during the winter. We wanted one of the functions of our solar panels to be that they could be distributed in disaster zones and be able to perform in suboptimal weather, so in modeling after the design of the pine needles, we are able to create a more resilient solar panel design.

When we settled on the idea of a plant-inspired solar panel, we came up with a range of different sketches to explore all of the possible designs we could think of, including a series of

sketches that eventually became the EnerTree (see Figure 4). Some of the other ideas we entertained but did not ultimately select, such as a tree-like structure with the solar panels on the trunk, solar panel buoys modeled after the puffer fish, a pine cone-shaped solar panel that revolves to keep facing the sun, and a kelp-like structure that could float in a body of water and absorb radiation from the sun.

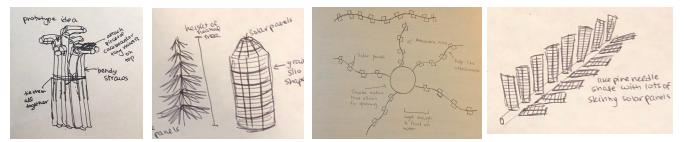


Figure 4. Prototype ideation sketches

Having a lot of different sketches and possible design solutions helped us to ensure that EnerTree was the best design. After deciding to move forward with the EnerTree design, we iteratively prototyped a portable, cylindrical device that would eventually be covered on all sides with solar panels. Our first iteration of this prototype explored the idea of a sturdy base with different attachable elements to the arms (Figure 5). Our second iteration of the EnerTree prototype introduced the idea of retractable dowels to add portability and resiliency to the structure (Figure 6). Our final prototype also incorporated this retractable dowel element, but was closer to what the actual device would look like so as it could be used for preliminary testing (Figure 7).

Figure 5. Prototype 1

Figure 6. Prototype 2

Figure 7. Prototype 3

We believe the design of cylindrical solar panels modeled after pine needles is viable because cylindrical solar panels have already been developed in the past. The original cylindrical solar panel design failed because originally, they were mounted onto rooftops just like flat solar panels, which meant that they were not installed to utilize the full potential of the solar panels' ability to absorb solar radiation from all angles, and thus the performance was far lower than the creators were expecting. However, if the cylindrical solar panels are part of a pine tree structure, then the shape is maximized, especially in snowy areas where the underneath of the panels would be subject to reflected light from the ground. Translating the single solar panels to our design would be an achievable process.

In the process of creating our prototype, we took advantage of the wide variety of skills that our team possessed. We utilized the mechanical engineering expertise of our team to model, construct, and add dynamic movement to our prototype. The team took advantage of the biological/biomedical engineering knowledge to analyse and apply the biologically inspired component of our design. The industrial engineering know-how of our group allowed us to apply optimization principles and engineering methods to the design of our prototype, which allowed us to design and create our device in the most efficient way possible. Finally, we were able to use the environmental engineering insight of our team to identify our design's applications in the real world, such as in harsh weather conditions and in disaster zone environments.

Our specific prototype is exclusively testable for size and portability concerns, but does not have the ability to be tested for energy conversion efficiency. However, our team does have a plan to test our prototype to obtain objective data. For our testing plan going forward, our team will conduct a series of light tests and measure the surface area of our prototype that is exposed to light at several different light angles, and along with the knowledge of the specific photovoltaic output of the type of solar panels that will comprise our device, we will calculate the amount of energy converted by our device at each light level. After evaluating the viability of the results of this test, the next step of our testing plan would be to create another prototype that had the flexible cylindrical solar panels covering the surfaces of the prototype, and then conduct similar light tests and compare the results to a typical photovoltaic cell, so as to truly validate the energy conversion efficiency of our design.

The viability of our prototype has been assessed through energy output prediction calculations. We utilized the equation for finding the solar PV energy output of a photovoltaic system and calculated the energy output of our solar array in different environments (see Figure 8). We then compared this value to the calculated output of a flat solar panel with the same surface area (Figure 9). We used surface irradiance data from NASA's Climatology Database to determine the daily change in sunlight intensity in Atlanta, GA. Under normal, sunny conditions, EnerTree is predicted to make only 7% less energy than a standard solar panel. In snowy conditions, EnerTree is capable of generating energy where flat panels can not.

Radiance fo	r Surface * Sur	face Area		
Morning (~6	<u>am-10am)</u>			
1/4 Direct S	un	0.00327841	kW-hr/day h	DNR MAX
1/2 Indirect	Sun	0.00313867	kW-hr/day	DIFF MAX
1/4 Shade		0.00095665	kW-hr/day	DIFF MIN
Total Surface	e Radiance:	0.00737373	kW-hr/day	
Midday (~10)am-2pm)			
1/4 Direct S	un	0.00327841	kW-hr/day	DNR MAX
1/2 Indirect	Sun	0.00313867	kW-hr/day	DIFF MAX
1/4 Shade		0.00095665	kW-hr/day	DIFF MIN
Total Surface	e Radiance:	0.00737373	kW-hr/day	
Evening (~2;	om-6pm)			
1/4 Direct S	un	0.00327841	kW-hr/day	DNR MAX
1/2 Indirect	Sun	0.00313867	kW-hr/day	DIFF MAX
1/4 Shade		0.00095665	kW-hr/day	DIFF MIN
Total Surface	e Radiance:	0.00737373	kW-hr/day	
ALL TOTAL:		0.02212120		
Solar Energy	Output (kWh	/day)		
A*H =	0.02212120			
r =	0.17			
Pr=	0.75			
Energy	0.03384544	kWh/day		

Yelow cell = enter your own data		
Green cell = result (do not change the value)		
White cell = calculated value (do not change the value)		
Global formula : E = A * r * H * PR		
E = Energy (kWh)	2811	kWh/an
A = Total solar panel Area (m²)	20	m²
r = solar panel yield (%)	15%	
H = Annual average irradiation on tilted panels (shadings not included)*	1250	kWh/m².a
PR = Performance ratio, coefficient for losses (range between 0.9 and 0.5, default value = 0.75)	0.75	
Total power of the system	2.0	kWp
Total power of the system	3.0	Kwp
Losses details (depend of site, technology, and sizing of the system)		
- Inverter losses (6% to 15 %)	8%	
- Température losses (5% to 15%)	8%	
- DC cables losses (1 to 3 %)	2%	
- AC cables losses (1 to 3 %)	2%	
- Shadings 0 % to 40% (depends of site) - Losses weak irradiation 3% yo 7%	3%	
- Losses due to dust, snow (2%)	2%	
	2 70	

Figure 8. EnerTree energy calculation

Figure 9. Standard solar panel energy

However, these calculations are only predictions. We would have to do proper light-shadow testing to determine the true daily energy output of the solar arrays. Due to the technical aspect of working with solar panels, our prototypes were not operable and modeled the shape changes in the array more so than the actual functionality. As a result, there could be electrical and material problems with our design that we did not have the knowledge to predict or experiment with during the class. Further testing and prototyping with actual solar panels would be needed to verify the absolute viability of our design before it could be applied to real scenarios.

We have demonstrated an elementary understanding of the natural systems that were used as inspiration for the EnerTree, however, given the vast complexities of each organism, we believe that we will never ever be able to completely understand the natural systems referenced in our work. We have drawn inspiration from a multitude of organisms for the final prototype, but we primarily focused on the morphology of certain natural systems without delving too deeply into the mechanistic attributes of the organisms. Morphology alone was enough for us to develop a solid foundation for a product idea and prototype. With more time and resources, we will be able to develop a thorough understanding of our organisms' and natural systems' attributes, and subsequently create more advanced iterations of the EnerTree. For example, further research into plants who have found ways to optimize photosynthetic energy storage can help us design the circuitry to improve energy retention efficiency.

Through this design process, our team learned how inspirations from nature can be used to develop new products and/or elevate existing technologies. Unlike other design courses that our team members have been exposed to, the BioInspired methodology used in this course forced us to seek out applications or issues that could benefit from our product. This required us to think in a new manner and approach design from a new perspective. As a team, we were able to look at 25 organisms, isolate interesting functions and attributes from each, and uses a series of unique tools to brainstorm potential solutions. With a 4.5-billion-year head start when compared to mankind, nature has already developed solutions and clever mechanisms to address large

problems. We simply utilized this fact to expedite the research and development of the EnerTree, a Bio-Inspired approach to revolutionize the morphology and deployment of solar panels.

To maximize energy production during the day while also retaining the benefits of round panels, we could modify the branches to be more almond-shaped. That way the panels can still produce energy on their undersides during snowy weather and also expose a larger percent of their surface area to the sun when it is clear. To further increase energy output, it would be useful to program or design the solar array so the branches can be raised at a specific degree to the horizon that allows maximal irradiance absorption. Such a degree can be easily found for any location on the NASA Climatology Database (see Figure 10)

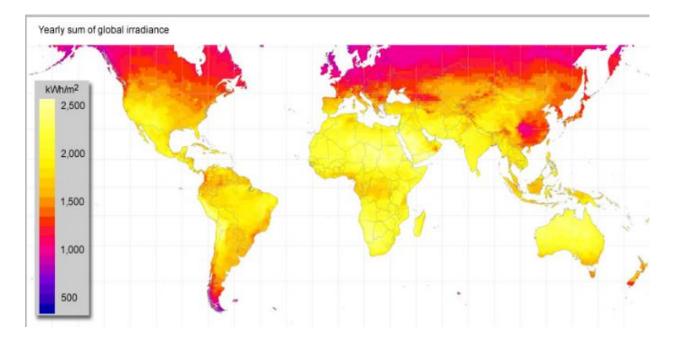


Figure 10. NASA Climatology Database radiance graph

More improvements would be evident as we transitioned to working with real solar panels. Aspects such as electrical efficiency, deployment, stabilization, and weather resistance would all be more easily hashed out with further prototyping and field testing. It would also be beneficial to determine what surface area to size ratio is most efficient for our solar array.